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ABSTRACT We introduce a novel and versatile approach for preparing hollow
multilayer capsules of graphene oxide nanosheets. Positively charged reduced
graphene oxide (rGO-NH3

þ) and negatively charged reduced graphene oxide (rGO-
COO-) were used as building blocks for the layer-by-layer assembly of graphene
multilayer films onto polystyrene (PS) colloids. After removing the PS colloids with
THF treatment, hollow graphene capsules with necessary physical and chemical
stabilities were prepared successfully. Furthermore, we expand this approach in
incorporating a new functionality such as gold nanoparticles into a hollow
graphene capsule. SEM and TEM analyses suggest the successful preparation of
multilayers of hollow graphene capsules and integration of gold nanoparticles into
a hollow graphene capsule.

SECTION Nanoparticles and Nanostructures

G raphene, a monolayer of an aromatic carbon lattice,
has attracted a tremendous amount of attention in
recent years because of its extraordinarily high elec-

trical and thermal conductivities, mechanical properties, and
large surface area.1-4Graphenehasbeenexplored for various
applications in electronic and energy storage devices, biome-
dical devices, and ultrathin membranes.5-9 In order to meet
the demands of the variety applications, preparation of
desired structures of graphene sheets with controlled dimen-
sion and architecture are of significant importance.

Taking full advantage of two-dimensional morphologies,
the preparation of an assembled graphene sheet into a
desired structure has been reported to produce the graphene
oxide (GO) papers and membranes, transparent conducting
electrode, and hybrid thin film. In particular, a stable suspen-
sion of GO is the common choice over pristine graphene with
its facile synthetic nature in a controlled, scalable, and repro-
ducible manner. For example, a number of approaches have
beenmade to assemblewell-dispersed oxidized or chemically
reduced grapheneoxide (rGO)nanosheets into thin filmswith
tailorable properties, includingvacuumfiltration,10 dip coating,11

spincoating,12Langmuir-Blodgettassembly,13anddirectchem-
ical vapor deposition.14,15 However, few papers have been
reported on the preparation of hollow capsules of graphene
through the controlled assembly of graphenes up to now.16

Alternatively, herein, we present a simple and facile ap-
proach of integrating exclusively graphene sheets onto the
surface of a colloidal template based on the layer-by-layer
(LbL) assembly.17-20 The LbL assembly offers a variety of
opportunities to prepare multilayer films of desired functions
with a nanometer scale control over the composition and
thickness. So far, various materials ranging from simple

polyelectrolytes to nanoparticles, nanotubes, and biomater-
ials have been incorporated within the LbL films through the
complementary interactions (i.e., electrostatic, hydrogen-
bonding, covalent bonding).19,21-24 In addition, LbL assem-
bly enables preparation of conformal thin films onto virtually
any substrate, irrespective of its size and shape, further
expanding its potential in creating three-dimensional objects
beyond the traditional thin films on a two-dimensional sur-
face.

Therefore, here, we report a simple protocol to prepare
hollow graphene capsules through LbL assembly of the stable
rGO nanosheets with opposite charges onto a sacrificial
polystyrene (PS) colloidal particle. Furthermore, we expand
this approach in incorporating a new functionality such as
gold nanoparticles (Au-NPs) into a hollow graphene capsule.
Considering the broad range of potential applications of
graphene sheets and LbL assembly, the approach developed
heremay lead to newpossibilities for the fabrication of hollow
graphene structures endowed with multiple functionalities.

To introduce the rGOnanosheet into an LbL assembly based
on the electrostatic interactions, GO suspensions were initially
prepared according to the modified Hummers method.18,19

Following the sonication for exfoliation of graphite oxide,
chemical functional groups introduced onto the surface of a
graphene sheet, such as carboxylic acids (COOH), render the
prepared GO negatively charged over wide pH conditions
(GO-COO-). Positively charged GO sheets were subsequently
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prepared by introducing amine groups (NH2) on the surface
of negatively charged GO sheets through the N-ethyl-N0-
(3-dimethyl aminopropyl)carbodiimide methiodide (EDC)-
mediated reaction between carboxylic acids (and/or
epoxides) and excess ethylenediamine, which led to a posi-
tively charged stable GO suspension (GO-NH3

þ). Chemical
reduction of the GO-COO- suspension was carried out by
adding hydrazine in the presence of ammonia to prevent the
aggregation of the resulting rGO-COO- suspensions, as re-
ported previously.25 The reduction of the positively charged
GO-NH3

þ suspension was identically carried out without
mixing of the ammonia solution to prepare the rGO-NH3

þ

suspensions.
The hollow graphene capsules were assembled based on

the electrostatic interactions by repeatedly layering the sus-
pensions of rGO-NH3

þ and rGO-COO- onto a colloidal PS
particle to afford the multilayer in the architecture of (rGO-
NH3

þ/rGO-COO-)n (n= number of bilayer) (Scheme 1a).
After LbL deposition, as similarly demonstrated with other
previous reports of using a sacrificial template to create the
hollow nanostructure,26 hollow capsules composed of rGO-
sheet-paired multilayers were recovered by removing the PS
colloidal particle substrates with THF exposure (Scheme 1b).

The formation of rGO sheet multilayer films requires that
the two types of aqueous-solution-dispersed objects be oppo-
sitely charged at a given pH. Zeta-potential measurements for
the reduced cationic rGO-NH3

þ and reduced anionic rGO-
COO- indicate that each rGO suspension meets this neces-
sary condition at pH 6 (29 ( 3.4 and -34 ( 6.3 mV,
respectively). Given that the PS colloids are highly negatively
charged under the samepH condition (-32(1.4mV), it was
logical to initiate the multilayer deposition using comple-
mentary rGO nanosheets with opposite charges. As a result,
the uniform adsorption of (rGO-NH3

þ/rGO-COO-)n multi-
layers on the PS colloidal particles from the first layers to last
six layers wasmonitored from the zeta-potential values of PS
colloidal particles periodically oscillating from 19.4 ( 9.4

(from the first rGO-NH3
þ layer) to -25.7( 11.5 mV (for the

last rGO-COO- layer) (Figure 1). These results of alternating
surface charge imply the stable growth of multilayers of
(rGO-NH3

þ/rGO-COO-)n onto PS colloids (diameter of 2 (
0.020 μm) upon sequential adsorption of oppositely charged
rGO nanosheets.

On the basis of the stable growth of (rGO-NH3
þ/rGO-

COO-)n multilayers on colloids, we have investigated the
morphology of PS colloids decorated with rGO sheets with
scanning electron microscope (SEM) and transmission elec-
tron microscope (Figure 2). Although the first few bilayers of
rGO sheets are hard to discern clearly due to the low contrast,
we found that the graphene sheets are uniformly coated onto
PS colloidal particles, yielding fairly smooth surface morphol-
ogy (see also Supporting Information). It is very interesting to
observe that the two-dimensional GO can conformally coat
the curvature of the colloidal PS particles without much
undulation. Though it was not possible to measure the film
thickness of the graphene multilayer on the PS colloidal

Scheme 1. Schematic Illustration of (A) the LbL Assembly of rGO
Sheets onto PS Colloidal Particles and (B) the Preparation of rGO
Multilayered Hollow Capsules with Removal of the Sacrificial
Template

Figure 1. Zeta-potentials of PS colloids alternatively coated with
rGO-NH3

þ(odd)/ rGO-COO-(even) as a function of layer number.

Figure 2. (a, b) SEM and (c, d) TEM images of (rGO-NH3
þ/rGO-

COO-)n multilayer films on a colloidal PS particle as a function of
bilayer (n); (a,c) n =3 and (b,d) n=5.
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particles in the current experimental setup, the average
thickness of a single bilayer of a (rGO-NH3

þ/rGO-COO-)n film
assembled on a flat silicon wafer corresponds to 1.36 nm
measured from ellipsometry.27

After removing the PS colloidal particle substrates, the
(rGO-NH3

þ/rGO-COO-)n multilayers yielded hollow capsules
with somewrinkles on the surface (Figure 3). The PS particles
readily decomposed into their constituent oligomers upon
treatment with extensive THF solvent. Further evidence for
the production of the hollow rGO capsules was obtained from
TEM images (see also Supporting Information). In this case,
the surface coverage of the (rGO-NH3

þ/rGO-COO-)n multi-
layers on a colloid template highlights the physical and
chemical stability of hollow rGO capsules upon removal of
colloidal templates by organic solvent. In addition, in order to
provide the potential of LbL, we have incorporated a new
functionality into the hollow capsule of graphenes. For exam-
ple, here, we prepared Au-NP-decorated rGO hollow capsules.
The positively charged 4-(dimethylamino)pyridine (DMAP)-
coated Au-NPs (diameter of 11 nm) and rGO-COO- sheets
were easily coupled to forma stable nanocomposite graphene
sheet decorated with a high density of nanoparticles. With a
modification of the LbL process of traditional bilayer format,
we have incorporated positively charged Au-NPs in an alter-
nate tetralayer of (rGO-NH3

þ/rGO-COO-/Au-NPs/rGO-COO-)n

multilayers, followed by PS colloid template removal to yield
the free-standing hollow Au-NP-incorporated rGO capsules.
Indeed, this was the case, as is depicted in the TEM images for
both two and three tetralayers (Figure 3c-f), thus confirming
the LbL assembly of the charged components on the particles.
It is apparent that the increase of the numberof tetralayers can
easily enhance the amount of incorporation of Au-NPs in
hollow rGO capsules.

In conclusion, we have demonstrated the formation of
graphene-based capsules through LbL assembly of surface-
functionalized rGO nanosheets of opposite charges onto PS
colloidal particles to producemultilayer thin films of graphene
nanosheets with an architecture of (rGO-NH3

þ/rGO-COO-)n.
Subsequent removal of the sacrificial PS colloidal templates
by THF treatment further produced the hollow graphene
capsule successfully. Furthermore, incorporation of gold nano-
particles into a shell of hollow graphene capsules was carried
out with (rGO-NH3

þ/rGO-COO-/Au-NPs/rGO-COO-)n multi-
layer films. The hollow capsule of rGO nanosheets exhibited
superior physical and chemical stabilities against external
stimuli introduced during the removal of PS colloidal particle
templates by THF treatment. By taking advantage of versa-
tile LbL assembly, we have demonstrated the successful
formation of three-dimensional hollow GO capsules using
suspensions of two-dimensional structure of GOnanosheets.
We anticipate that the results presented in this study will
provide a basis for designing hollow graphene capsules to
open new possibilities in drug delivery, catalysts, and elec-
trochemistry.

SUPPORTING INFORMATION AVAILABLE Detailed experi-
mental procedures of the preparation of rGO multilayers on
colloidal particles. Additional SEM images of (rGO-NH3

þ/rGO-
COO-)n multilayer films on PS colloidal particles and TEM images
of hollow graphene capsule films after removing the sacrificial PS
colloidal particles as a function of bilayer (n). This material is
available free of charge via the Internet at http://pubs.acs.org.
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